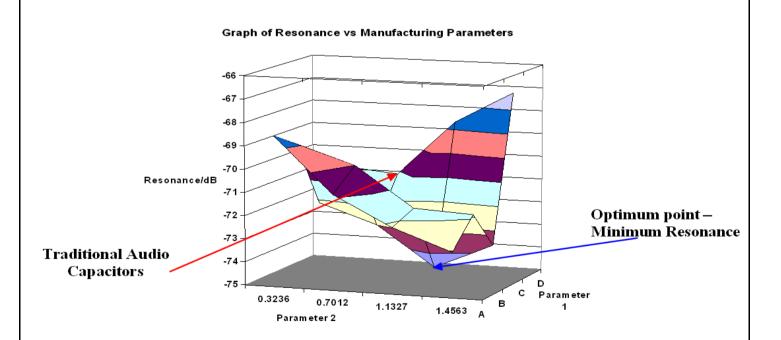
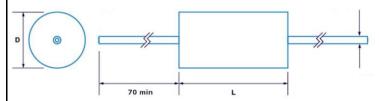
MR Range.

The MR range has been developed as a direct result of the 2year research programme conducted between ClarityCap and the world-renowned Acoustics

Research Centre at the University of Salford.


No stone was left unturned; the research encompassed all the materials used in audio capacitors and any existing performance data together with analysis of manufacturing processes and techniques. The crucial factor to emerge was the effect that mechanical resonances within a capacitor have on sound quality and the importance of reducing or controlling a capacitor's sonic output.

The capacitor employs a non-standard polypropylene film, ultra-pure aluminum metallization and is housed in a coloured acrylic tube, the result of which is a capacitor which virtually eliminates internal sonic resonance. Terminals are hand soldered tinned copper.


A guaranteed 3% tolerance ensures component to component consistency for a balanced system and reproducibility across production runs.

The graph below shows the relative sonic outputs between the SA (Traditional) and MR (Optimum Point) ranges.

20/09/2019 12 of 78

Component Outline

Dimensions are shown in mm (max). Intermediate values are available upon request.

Ordering Details

MR 5u6 H 630V

Tolerance **630V** Rated dc vol (3%)

Size Chart					
400Vdc			630Vdc		
Cap	L	D	Cap	L	D
(nF/µF)	(mm)	(mm)	(nF/µF)	(mm)	(mm)
330n	40	25	10n	27	25
470n	40	25	15n	27	25
680n	40	25	22n	27	25
820n	40	25	33n	27	25
1μ0	40	25	47n	27	25
2µ2	50	38	47n	27	25
3µ1	50	38	68n	27	25
3µ3	50	38	82n	27	25
3µ9	50	38	100n	27	25
4µ1	50	38	220n	35	25
4µ7	50	38	330n	40	25
5µ6	50	50	470n	40	25
6µ2	50	50	680n	45	25
6µ8	50	50	820n	40	38
8µ2	50	50	1μ0	40	38
10µ	65	50	2µ2	50	38
12µ	65	50	3µ1	65	38
15µ	65	50	3µ3	65	38
16µ	85	50	3µ9	50	50
18µ	85	50	4µ1	50	50
22µ	65	76	4μ7	50	50
27µ	65	76	5µ6	65	50
35µ	65	76	6µ2	65	50
			6µ8	85	50
			8µ2	85	50
			10µ	85	50
			12µ	85	76
			15µ	85	76
			16µ	85	76
			18µ	85	76
			22µ	85	76
			27µ	85	76

20/09/2019 13 of 78